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We present first-principle evaluations of the electron-phonon coupling strength parameter and associated
characteristics of relaxation for the excited electrons in the conduction band of zinc oxide. The evaluations are
based on the pseudopotential plane-wave approach to the electronic band structure, the density-functional
perturbation theory for the calculations of phonons and electron-phonon interactions, and on the “Fermi golden
rule” for evaluations of the electron relaxation time and the energy-loss time. The calculations demonstrate
existence of two types of electron dynamics, the picosecond one for electrons near the bottom of the conduc-
tion band and the femtosecond for the higher energies. Sensibly good agreement with experimental data
confirms the validity of the calculations.
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I. INTRODUCTION

A great interest of researchers in zinc oxide is supported
by the perspectives of its applications in optical and opto-
electronic devices.1,2 Besides, the doped zinc oxide manifests
itself as a good photocatalyst which can be used for decom-
posing harmful bacteria and organic contaminants.3–5 Since
the optical and photocatalytic properties to a great extent
depend on the dynamics of excited states, the studies of fast
electron dynamics in zinc oxide have been carried out in a
series of experimental works employing time-resolved opti-
cal techniques. A great part of them concerns with the
dynamics of exciton states important for optical
applications.6–11 These researches have permitted to evaluate
the rates of the main excitonic processes, i.e., relaxation,
recombination, and capture by impurities. Since the concen-
tration of excitons in oxide semiconductors is typically low,
in the photocatalytic processes more important is the dynam-
ics of free excited carriers, electrons and holes. However, the
available experimental data are controversial. Yamamoto et
al.12 performed two-photon time-resolved experiments with
the energy of quanta from 3 to 3.5 eV and deduced the time
of cooling of the electron-hole plasma in ZnO shorter than 1
ps. Sun et al.13 studied the carrier dynamics in ZnO in the
excitation energy interval from 3.33 to 3.48 eV and found at
3.33 eV a faster thermalization time, about 200 fs. In the
pump-probe experiments of Wen et al.6 the electron relax-
ation time at room temperature has been estimated as about
800 fs at the energy above 3.45 eV but essentially increasing
with the reduction in energy, up to 34 ps at 3.26 eV. Hendry
et al.9 performed for ZnO the pump-probe experiments with
probing in tetrahertz energy region. At temperature about 20
K and excitation energy of 3.21 eV, i.e., below the funda-
mental band gap, they found the time of binding of free
electrons and holes into excitons as 20 ps.

With such great dispersion of experimental estimates, it is
desirable to perform first-principle theoretical calculations of

the characteristic times of carrier dynamics in ZnO. Since the
value of the energy gap in wurtzite-structure ZnO is 3.37 eV,
the main mechanism of electron relaxation at the energy of
excited electrons with respect to the bottom of the conduc-
tion band �BCB� less than 3.37 eV is the electron-phonon
interaction. This is the main distinction of the electron relax-
ation in semiconductors from the relaxation in metals, where
the main mechanism of relaxation is the electron-electron
scattering well studied before on the first-principle level14–16

One can evaluate the electron relaxation time in semiconduc-
tors using the theory of electron-phonon interactions in
metals.17,18 The chance to perform such calculations has ap-
peared with the development of the first-principle methods of
calculating the phonon spectra and electron-phonon scatter-
ing based on the density-functional perturbation theory.19,20

However, we are aware of only two evaluations of this type:
for excited electrons in GaAs, GaSb, and GaP �Refs. 21 and
22� and for electrons in the conduction bands of the e-doped
LiH.23 In contrast to Ref. 22, our approach includes the
evaluations of the momentum-averaged electron-phonon re-
laxation rate in ZnO in two ranges of excited electron energy.
The first range extends from the BCB to the maximum pho-
non energy and the second range extends from the top energy
of the first range to the energy 3.0 eV with respect to the
BCB, i.e., up to the energy close to that at which the
electron-electron scattering becomes essential. We find that
the rate of electron-phonon relaxation significantly differs in
these two energy regions: whereas in the first region it hap-
pens in the picosecond time scale, in the second one it occurs
in the femtosecond time scale.

II. THEORY

In accordance to the “golden Fermi rule,” the probability,
per unit of time, of the electron transition between two states
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mediated by the electron-phonon coupling is determined by
the equation

Pk,i;k+q,j
� = �2�/����k,i��Vq��k + q, j��2��ek+q,j − ek,i� .

�1�

Here �k , i� and �k+q , j� are the electronic states participating
in the transition accompanied by the absorption or emission
of phonon with the moment q and polarization �, and the
value �Vq� is the variation in the self-consistent potential in
crystal caused by the displacement mode of the phonon. The
value �k , i��Vq��k+q , j� is the matrix element of the
electron-phonon interaction; the ways of calculating this ma-
trix element have been extensively discussed in literature.20

In Eq. �1� the energy of the phonon has been neglected since
it is small compared to the energies of electronic states ek+q,j,
ek,j; this is the so-called quasielastic approximation. Having
integrated over all the possible momenta of phonons with
energy �, one obtains the probability for the electron to leave
the state �k , i� �probability normalization integral is tempo-
rarily omitted; it is discussed later�

�k,i��� = �2�/���
j

�
�
�

BZ

���q
� − ����k,i��Vq��k

+ q, j��2��ek+q,j − ek,i�d3q . �2�

Here and in all the following equations the integration over
� extends from zero to the maximum phonon energy. Inte-
grating over � and taking into account thermodynamic fac-
tors for electrons and phonons one obtains the expression for
the rate of electron-phonon relaxation

	k,i =� d��k,i����1 + 2n��,T� + f�� + ek,i,T� − f��

− ek,i,T�	 . �3�

In Eq. �3� the probability of phonon emission and absorption
has been taken into account; it depends on temperature
through the Bose-Einstein function for phonons n�� ,T� and
the Fermi-Dirac function for electrons f�� ,T�, see details
in.17 At low temperature it is reduced, with a high precision,
to the equation

	k,i =� d��k,i����2n��,T� + 1	

= �2�/���
j

�
�
� d��

BZ

d3q���q� − ����k,i��Vq��k

+ q, j��2��ek+q,j − ek,i��2n��,T� + 1	

= �2�/���
j

�
�
�

BZ

d3q��ek+q,j − ek,i���k,i��Vq��k

+ q, j��2�2n��q�,T� + 1	 . �4�

The function �k,i��� differs only in a constant from the well-
known Eliashberg function 
2Fk,i���=�k,i��� / �2� /��,


2Fk,i��� = �
j

�
�
�

BZ

���q
� − ����k,i��Vq��k + q, j��2��ek+q,j

− ek,i�d3q . �5�

The Eliashberg function determines the electron-phonon in-
teraction strength parameter

�k,i = 2� 
2Fk,i���
�

d� . �6�

The time of electronic relaxation for the state �k , i� is
determined as the inverse value of the rate of electron-
phonon relaxation

�k,i = �/	k,i. �7�

So �k,i characterizes the time that the electron can reside in
the state �k , i�. The values 	k,i and �k,i characterize the quasi-
elastic scattering of an electron via phonon emission and
absorption. The 	k,i value also determines the width of the
electronic spectral line.17

In the case of photocatalyses we are also interested in
evaluating the energy-loss time, hereafter �en, which is the
time necessary for an electron to fall down to the bottom of
the conduction band via repeated emission of phonons. One
can evaluate the averaged loss of energy by the electron in
the state �k , i�; it is determined by the first moment of the
probability function �k,i

�ek,i =� d��k,i�����2n��,T� + 1	

= 2�� d�
2Fk,i�����2n��,T� + 1	

= 2�� d���
j

�
�
�

BZ

d3q���q
� − ����k,i��Vq��k

+ q, j��2��ek+q,j − ek,i��2n��q�,T� + 1	

= 2��
j

�
�
�

BZ

d3q�q���k,i��Vq��k + q, j��2��ek+q,j

− ek,i��2n��q�,T� + 1	 . �8�

The integration over q includes the whole Brillouin zone.
�It is accepted hereafter that the atomic system of units is
employed, so �=1 and energy is in Ry units.�

One can obtain then the expression for the momentum-
averaged values. For the electron-phonon coupling parameter
it is

��
� = �1/N�
�	�
i
� d3k��ek,i − 
��k,i/�k,i. �9�

By analogy, for relaxation rate we have

	�
� = �1/N�
�	�
i
� d3k��ek,i − 
�	k,i/�k,i �10�

and for the energy loss we have
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�e�
� = �1/N�
�	�
i
� d3k��ek,i − 
��ek,i/�k,i. �11�

Here N�
� is the density of electronic states at the energy 
,
and we have taken into account the probability normalization
integral �k,i

�k,i =� d��k,i��� . �12�

Then one obtains

	�
� = �2�/N�
�	�
i

�
j

�
�
�

BZ

d3k� d3q��ek,i − 
���ek+q,j

− 
���k,i��Vq��k + q, j��2�2n��q�,T� + 1	/�k,i, �13�

�e�
� = �2�/N�
�	�
i

�
j

�
�
�

BZ

d3k� d3q��ek,i − 
���ek+q,j

− 
���k,i��Vq��k + q, j��2�q��2n��q�,T� + 1	/�k,i.

�14�

In order to calculate the normalization integral �k,i we
employ the averaging over all the energies 
k,i=
, i.e., we
admit that this integral can be replaced with

��
� = �1/N�
�	�
i
� d3k��ek,i − 
��k,i. �15�

This is the approximation similar to the “random k-vector”
approximation, successful in the theory of femtosecond elec-
tron dynamics in metals.24 It simplifies and accelerates the
calculations. Eventually the expression for �e�
� is reduced
to

�e�
� =

�
�
� d3q�q,�	̃q,��
�

�
�
� d3q	̃q,��
�

, �16�

where

	̃q,��
� = �2�/N�
�	�
i

�
j

�
�
�

BZ

d3k��ek,i − 
���ek+q,j − 
�

���k,i��Vq��k + q, j��2/��
� �17�

is the q ,�th term of the integral �Eq. �13�	 with omitted
temperature-dependent factor 2n+1. One can evaluate then
the time �en necessary for an electron to fall down to the
bottom of the conduction band. If the time of electron relax-
ation is ��
�, and the effective energy loss is �e�
�, then the
rate of energy loss is �e�
� /��
�=�e�
�	�
�. Then the time
of loosing the total excess energy �which we define as the
energy of the excited electron with respect to BCB� is

�en�
� = �
0


 dE

�e�E�	�E�
. �18�

The foregoing theory is based on the assumption that the
excess energy of an excited electron is higher than the maxi-
mum phonon energy. In this case any optical or acoustic
phonon can be excited in the course of electron relaxation, so
the integration over phonon momenta extends over the whole
Brillouin zone. This is not valid if the excess energy of the
electron is less that the maximum phonon energy. In such the
case the phase space of phonons which can be excited is
reduced by the requirement of the energy conservation. For
this energy region we disregard the differences in the values
of the electron-phonon matrix elements and evaluate the
electron relaxation rates from only the value of the phonon
phase space. The low-energy relaxation rate is then evaluated
as

	�
� = Nph�
�	��max� . �19�

Here 	��max� is the relaxation rate of an electron whose
excess energy is equal to the maximum phonon energy �max,
and Nph�
� is the total number of phonon states �i.e., the
phase space� in the energy interval from zero to 
, normal-
ized to unity at 
=�max. We calculate the value 	��max� as it
was discussed before for the high-energy region. Afterwards
we evaluate the energy-loss time following Eq. �7�.

III. DETAILS OF CALCULATIONS

The numerical evaluations have been done using the
density-functional perturbation theory19,20 implemented in
the pseudopotential QUANTUM ESPRESSO �QE� computer
code25 where we have included all the modifications neces-
sary for our purposes. In the calculations of electronic states
the ultrasoft pseudopotentials with gradient-corrected
exchange-correlation of Perdue and Wang provided by the
QE for the zinc and oxygen atoms were employed, hence,
Zn 3d states were treated as valence ones. A plane-wave ba-
sis set with the energy cutoff of 50 Ry was employed in the
electronic-structure calculations, which is sufficient for the
calculations of phonon frequencies, as it was shown in Refs.
26 and 27. Additionally, we found that the electronic band
structure does not practically change if the cutoff energy is
increased up to 80 Ry. The calculations were performed for
the optimized ground state of the wurtzite structure. The total
optimization of the crystal structure parameters has resulted
in very small deviations from the experimental data, less
than 0.5%. It is not clear a priory how dense should be the
wave vector grid for electrons �k� and phonons �q� to pro-
vide a good convergence of the electron-phonon matrix ele-
ments and all the dependent values. So we have checked the
electron and phonon band structure calculations with three
different Monkhorst-Pack grids. The grids 6�6�4, 8�8
�6, and 10�10�8 of q vectors and k vectors have been
employed for the phonon calculations while the grids of k
vectors denser by a factor of 2 have been employed in the
calculations of electron-phonon matrix elements. It is shown
in the following section that a very small difference in the
characteristics of electron dynamics is achieved when going
from the second to the third grid, which is denser than those
employed in previous works on the phonon calculations for
the oxide semiconductors.26,27 So we believe that with the
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third grid the momentum-averaged characteristics of electron
dynamics are practically converged. With all the three grids
we have the electronic band structure similar to that obtained
in previous density-functional theory-local-density approxi-
mation �DFT-LDA� calculations.28 The main drawback of
such calculations is a too small value of the electronic band
gap, 1.2 eV in our calculations as compared with the experi-
mental value of 3.4 eV. Much better value of the band gap
can be obtained by applying the so-called many-body GW-
corrections to the DFT-LDA band structure.29 We do not be-
lieve, however, that the characteristics of electron dynamics
in ZnO can be changed with the GW corrections. The varia-
tion in the self-consistent potential �Vq� defining the prob-
ability of electronic transitions via the Eq. �1� is determined
by the occupied states, so it is independent on the value of
the band gap. On the other hand, within the GW approach
the electronic state wave functions are kept equal to those
obtained in the DFT-LDA band-structure methods. Hence
one may expect that the momentum-averaged electronic tran-
sition probabilities between the conduction band states can
be changed with inclusion of the GW corrections merely if
the dispersion of these states is essentially changed. This is,
however, not the case of ZnO, where the GW corrections are
small for the states in the valence band whereas the states of
the conduction band are shifted with these corrections almost
rigidly to higher energy.28,30

The delta function in Eqs. �13�, �14�, and �17� was ap-
proximated by the first-order Hermite-Gaussian function
with a broadening width �. The choice of the broadening
width � provides a delicate problem of the calculations. This
choice has to provide a good quality for momentum averag-
ing of the electron-phonon interaction characteristics. A
proper choice has been done using the results of the calcula-
tions performed for three energies of excited electron. These
energies were 0.03, 1.53, and 3.03 eV above the BCB, hence
close to the minimum, middle and maximum of the energy
interval of interest. The choice of � is discussed in the next
section. All the calculations of the relaxation rate have been
performed for zero temperature, that is with the n�� ,T=0�
=0. Hence, all the effects associated with the thermal dila-
tions of the crystal lattice, e.g., the temperature dependence
of the electron-phonon relaxation rate,31 have been omitted.

IV. RESULTS AND DISCUSSIONS

Since the first-principle calculations of the electron-
phonon interactions in semiconductors available in literature
are scarce, a special attention in our research has been paid to
the convergence of the momentum-averaged indices of elec-
tron dynamics with respect to the calculation parameters,
first of all with respect to the number of phonon wave vec-
tors and broadening parameter �. In Fig. 1 the density of
phonon states �DOS� is shown for the three wave vector
grids, 6�6�4, 8�8�6, and 10�10�8. It is evident that
the calculations are on the average well converged with re-
spect to the number of q vectors. In Fig. 2 we show the
computed phonon dispersion along the symmetry directions
of the Brillouin zone together with the available experimen-
tal phonon frequencies.32–34 The mean-square deviation of

the calculated phonon frequencies from the experimental
ones is about 30 cm−1, so the agreement between the present
calculations and the experiment is comparable to that of the
previous evaluations.27 A better correspondence between the
calculated and experimental phonon energies is observed for
the phonon states along the M-	 and 	-A directions. For the
	-K direction the calculated phonon energies are typically
lower than the experimental data. However, the underestima-
tion of the phonon energies for the states along the 	-K
direction is partly compensated by an overestimation for the
states along the M-	 direction. Besides, the phonon states
nearly the 	-K direction represent only a small portion of the
states employed in the momentum averaging. So the men-
tioned deviations between calculated and experimental data
for the 	-K direction hardly evoke noticeable errors in the
averaged indices of electron dynamics.

Figure 3 demonstrates the data necessary for the adequate
choice of the broadening width �. This value should be as
small as possible but providing good quality of the averaging
over the q vectors. At the excess energy of excited electrons
about 1.5 and 3.0 eV a strong dispersion with � and the
number of q vectors is observed when � is below 0.03 eV.

FIG. 1. The DOS calculated for the three grids of phonon wave
vectors, and the number of phonon states for the 10�10�8 grid
normalized at maximum to unity.

FIG. 2. The calculated phonon dispersion curves �solid lines�
along symmetry directions in the Brillouin zone of the wurtzite-
structure ZnO and the corresponding experimental data as well,
open and solid circles, and diamonds �Refs. 32–34�.
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Since no good convergence is obtained for such values of �,
we define the value �=0.03 eV as the acceptable low limit
and all the following data on the relaxation are obtained with
this � value.

In Fig. 4 we show the dependence of the electron-phonon
coupling parameter �, relaxation rate 	 and electron energy
loss at one electron-phonon scattering event �e on the excess
energy of excited electron with different number of the pho-
non q vectors. It is evident that the �e value is well con-
verged with the number of q vectors and is practically inde-

pendent on the energy of electron, hence we assume
hereafter that �e=0.063 eV. As for the � and 	 values, with
6�6�4 grid they show irregular changes with energy and
deviate from the results obtained for the denser grids. The
results for the 8�8�6 grid and 10�10�8 grid are almost
identical, that confirms a good convergence of these results
with respect to the density of the grid of q vectors.

In Fig. 5 the dependence of the relaxation time �rel and
energy-loss time �en on the electron excess energy is shown.
Both �rel and �en have been evaluated for two energy inter-
vals of interest, the first one being from zero up to the maxi-
mum phonon energy and the second being above the first one
up to the value of the forbidden band gap.

The data reveal two regimes of the relaxation processes.
At the electron excess energy above 
0.01 eV a fast relax-
ation regime is expected with both relaxation time and
energy-loss time in the femtosecond time scale. At lower
energy, due to smaller number of excited phonon modes, a
slow picosecond relaxation is expected, with both the relax-
ation time and energy-loss time quickly rising with reduction
in electron excess energy.

The comparison between our values of relaxation rate �rel
and available experimental data raises problems associated
with the interplay between our theoretical approach and per-
formed experiments. The characteristics studied in the time-
resolved spectroscopy experiments �absorption, transmis-
sion, conductivity� depend on the electron populations ��t ,
�
of the energy levels of interest. The temporal change in the
population is approximated usually with the function ��t ,
�
=��0,
�exp�−t /�exp�
�	 where �exp is the time characterizing
the rate of reduction in the energy level population. The
value �exp is evaluated by adjusting to the experimental data,
hence it is influenced by the effects of temperature and the
effect of backflow of energy from the phonons to electrons
which can be important at high fluences of excitation. The

FIG. 3. The dependence of the electron-phonon coupling
strength parameter � on the number of phonon q vectors in the grid
and on the broadening width � for the three excess energies of the
excited electron, 0.03, 1.53, and 3.03 eV. The open diamonds are
the data for the 6�6�4 grid of q, open squares are for the 8�8
�6 grid and black diamonds are for the 10�10�8 grid.

FIG. 4. The dependence of �, 	, and �e on the excess energy of
an excited electron E−EBCB and on the number of phonon q vectors
in the grid.

FIG. 5. The dependence of the relaxation time �rel and energy-
loss time �en on the excess energy of excited electron in the con-
duction band of ZnO.
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backflow can lift the electrons from the lower energy levels
to the level of interest, thus increasing the relaxation time.
An essential role of such process has been remarked in the
pump-probe experimental studies of Sun et al.13 In our ap-
proach the temperature factor in neglected and our relaxation
times refer to the relaxation of a single particle, which is not
the case of experimental works. So our relaxation time is not
identical to the experimental relaxation time �exp�
�.

In Table I we have collected the major information on the
experiments employed for the studies of the electron-phonon
relaxation of the excited states in ZnO. The experiments of
Yamamoto et al.12 have been performed for 230 nm thick
epitaxial films of ZnO, the experiments of Sun et al.13 have
been done for 80 nm thick nanorods, and the results of Hen-
dry et al.9 were obtained from measurements of bulk ZnO
samples. So the data obtained in these experiments can be
associated with the bulk ZnO. On the contrary, the results of
Wen et al.6 were derived from measurements of ZnO/
ZnMgO multiple quantum wells with thin �2 and 5.5 nm�
layers of ZnO and ZnMgO. Nevertheless, we will show later
that the results of Wen et al. are in reasonable agreement
with the others experiments.

In Refs. 6, 12, and 13 the study of the excited electron
dynamics in ZnO was performed by means of the pump-
probe techniques with the energy of the pump and probe
quanta in optical range. The experiments were carried out at
room temperature and with different fluences of excitation
energy. In the Ref. 12 the cooling of electron-hole plasma in
ZnO was studied with high density of excitation, up to
280 �J /cm2. Yamamoto et al.12 evaluated the time of cool-
ing of electron-hole plasma as being about 1 ps. With high
density of excitation the backflow raises the relaxation time,
so the cooling time of Yamamoto et al. is expected to be
longer than our �rel values, which really takes place. A para-
doxical feature of the Yamamoto et al. results is that the
relaxation time has been determined from the absorption

spectrum at the energy �3.20 eV, lower than the forbidden
bang gap, 3.37 eV. The authors explained the possibility of
such absorption by the renormalization of the band gap in the
presence of high number of carriers excited by the pump
pulse. The bottom energy of the renormalized conduction
band is difficult to derive from the data of Yamamoto et al.;
it is, however, clear that this energy is less than 3.2 eV.
Hence it would be incorrect to compare the data of Yama-
moto et al. with our data at a definite electron energy.

More satisfactory is the comparison of our �rel values with
the data of Sun et al.13 They studied the electron dynamics at
two excitation energies, 3.39–3.48 eV and 3.33 eV. In the
experiments at 3.39–3.48 eV the electron relaxation time was
evaluated with the pump energy fluence significantly less
intensive than in the work of Yamamoto et al. So one may
expect that the renormalization of the band gap in Ref. 13
was smaller than in the Yamamoto’s experiments and the
process of electron relaxation is more similar to the relax-
ation of a single carrier. At the excitation energy 
0.04 eV
above the nonrenormalized band gap width Sun et al. have
obtained �exp=200 fs. The validity of their evaluations for
�exp was supported by the experiments at the energy of 3.33
eV. This energy, below the forbidden band gap, corresponds
to the excitonic states, so at low fluence of excitations the
authors refer the experimental relaxation time for such en-
ergy to the exciton recombination. At the excitation fluence
about 130 �J /cm2 they find a second process of relaxation
with the time constant 
200 fs. Since this occurs at the
concentration of electron-hole pairs higher than the Mott’s
one, 3.7�1019 1 /cm3,13 they refer this time constant to the
cooling, due to the electron-phonon coupling, of the
electron-hole plasma which appears as a result of the inter-
actions between excitons.

We have at E−EBCB=0.04 eV �rel=46 fs, still shorter by
a factor of 4 than the Sun’s value of 200 fs. A presumable
origin of this deviation is a still high intensity of excitations

TABLE I. The major features of the experiments on the electron-phonon relaxation in ZnO. Here F is the
fluence of excitation, T is the temperature, E is the energy of the studied states �with respect to the top of the
valence band�, ToS is the type of the studied states, Nexc is the density of the excited electron-hole pairs, � is
the time of electron-phonon relaxation. The notations for the types of states are: SCB is for the states of the
conductivity band, RSCB is for the states of the renormalized conductivity band, EHPDE is for the electron-
hole plasma occurring after delocalization of the exciton gas.

Reference
F

��J /cm2�
T

�K�
E

�eV� ToS
Nexc

�1 /cm3�
Time of electron-phonon

relaxation �ps�

Yamamoto et al.a 90 273 3.21–3.27 RSCB 1

Sun et al.b 13 273 3.39–3.48 SCB 4�1018 0.2

100,130 273 3.33 EHPDE 2�1019, 4�1019 0.2

Hendry et al.c 200 30 3.1 RSCB 2�1016 20

4.7 SCB 2�1019 1.5

Wen et al.d 1000 273 3.54 SCB 1�1020 �1

3.34 EHPDE 7

3.26 RSCB 34

aReference 12.
bReference 13.
cReference 9.
dReference 6.
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in experiments, due to which the backflow of energy to ex-
cited electrons takes place raising the relaxation time. Notice
that much lower energy fluence is employed in the pump-
probe experiments on the single electron relaxation in
metals.35 In such experiments roughly about
106 electrons /cm3 are excited, significantly less than
1018 electrons /cm3 in the work of Sun et al.

The validity of our evaluations of �rel can also be checked
by comparison with the experimental data of Hendry et al.9

The authors studied the electron dynamics at two energies of
pump quanta, 4.7 and 3.1 eV, and with high fluence of exci-
tation, 200 �J /cm2. The relaxation time was derived from
the temporal evolution of the transient conductivity as a re-
action of the system to the applied probe quanta of tetrahertz
energy. In the first case the plasma of electron-hole pairs was
generated with the density of 2�1019 1 /cm3. The authors
derived the time of cooling about 1.5 ps, which is compa-
rable with the data of Jamamoto et al., 1 ps, Sun et al., 200
fs. Moreover, the higher value of �exp of Hendry et al. is
compatible with the fluence of excitation in their experi-
ments higher than in the works of Yamamoto et al. and Sun
et al.

In the second case the number of electron-hole pairs was
about 1016 1 /cm3, less than in the work of Sun et al.13 Since
the excitation energy, 3.1 eV, is less than the forbidden band
gap and the fluence of excitation is high, the relaxation pro-
cess should be referred to the cooling of the states of the
renormalized conduction band. Unexpectedly, in this case
Hendry et al. evaluated the time of cooling as 20 ps, much
higher than the time of cooling with low fluence of excitation
from the works of Yamamoto et al.,12 Sun et al.13 One can
rationalize this result if one approves that the states studied
at the excitation energy of 3.1 eV are very close to the bot-
tom of the renormalized conductivity band. Since the energy
of the probe quanta in Hendry’s experiments was about
1 THz=0.004 eV, we can compare the data of Hendry et al.
with our data at such excess energy, 46 ps. The difference
between experimental and theoretical data is quite sensible,
taking into account the simplifications of our calculations at
low energy, first of all omitting the calculations of electron-
phonon matrix elements.

The comparison with the data of Wen et al.6 confirms the
validity of the previous speculations. The experiments were
carried out at the fluence of excitation 
1 mJ /cm2; the en-
ergies of the studied states were from 3.26 to 3.54 eV. With
such fluence of excitation, the excitation near 3.26 eV should
be to the states of the renormalized conduction band. When
the energy of excitation is close to the middle of this energy
interval, the excited states are the states of electron-hole
plasma after the Mott’s transition in the gas of excitons. At
the top of this energy interval one should observe the exci-
tation to the normal conductivity band states. So, basing on
the previous discussion, one should observe with the de-
crease in the excitation energy an essential increase in the
relaxation time. This is just the case of the data of Wen et al.,
see Table I and more complete data in Ref. 6.

One more indirect confirmation of the fast electron-
phonon relaxation of the electrons in the conduction band of
ZnO is contained in the Ref. 36. In this work the rate of
electron-phonon relaxation has been evaluated for the highly

n-doped ZnO with the concentration of carriers in the con-
duction band equal to about 1020 1 /cm3. The pumping was
in the IR region with the energy of quanta of 0.709 eV, and
the probing of transient transmission was in the UV region
with the energy of quanta from 3.18 to 3.40 eV. So probed
was the relaxation of the electrons in the conduction band
with the excess energy up to about 0.7 eV; the authors evalu-
ated the time of relaxation as about 500 fs.

V. CONCLUSIONS

Basing on the density-functional perturbation theory, we
performed the first-principle evaluations for the electron-
phonon coupling parameters, for the relaxation time and time
of energy loss of excited electrons in the conduction band of
zinc oxide. The calculations have been examined with re-
spect to the choice of the number of basic plane waves, the
number of wave vectors in the Monkhorst-Pack grid and the
broadening width for averaging near the energy of excited
electron. The calculations demonstrate two types of excited
electron dynamics. For electronic excited states with excess
energy higher than the maximum phonon energy the electron
dynamics occurs in the femtosecond region. In this region
the relaxation time and energy-loss time have different trends
with increase in energy, the reduction in the first one and the
increase in the second. For the excited states with excess
energy less than 0.01 eV the picosecond dynamics is pre-
dicted. In this case both the relaxation time and the energy-
loss time sharply raise with the decrease in the energy of
electrons, which is associated with the reduction in the pho-
non phase space. Notice that these results are in some aspects
analogous to the results of the papers37,38 where the phonon-
mediated excited electron relaxation on metal surfaces has
been studied. The authors also found two regimes of relax-
ation, the slow one at the excitation energy less than

30 meV and the fast one at higher energies.

The comparison of the calculated relaxation time with the
experimental data shows sensible agreement, thus confirming
existence of the two types of electron dynamics. As for the
calculated energy-loss time, we are not aware about any ex-
perimental data that can be compared with our prognosis.
However, a qualitative conclusion useful for better under-
standing of the photochemical reactions on the surface of
zinc oxide can be drawn. In real experiments on photocataly-
ses the electrons can be excited by UV emission much above
the BCB. However, since the energy-loss time for the energy
levels less than 0.01 eV far from the BCB are three orders
higher then those for higher energy, one should expect that
because of the fast femtosecond relaxation from the higher
states the photocatalytic properties are determined almost ex-
clusively by the states at the bottom of the conduction band.
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